Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
NPJ Precis Oncol ; 6(1): 37, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705792

RESUMO

Understanding factors that impact prognosis for cancer patients have high clinical relevance for treatment decisions and monitoring of the disease outcome. Advances in artificial intelligence (AI) and digital pathology offer an exciting opportunity to capitalize on the use of whole slide images (WSIs) of hematoxylin and eosin (H&E) stained tumor tissue for objective prognosis and prediction of response to targeted therapies. AI models often require hand-delineated annotations for effective training which may not be readily available for larger data sets. In this study, we investigated whether AI models can be trained without region-level annotations and solely on patient-level survival data. We present a weakly supervised survival convolutional neural network (WSS-CNN) approach equipped with a visual attention mechanism for predicting overall survival. The inclusion of visual attention provides insights into regions of the tumor microenvironment with the pathological interpretation which may improve our understanding of the disease pathomechanism. We performed this analysis on two independent, multi-center patient data sets of lung (which is publicly available data) and bladder urothelial carcinoma. We perform univariable and multivariable analysis and show that WSS-CNN features are prognostic of overall survival in both tumor indications. The presented results highlight the significance of computational pathology algorithms for predicting prognosis using H&E stained images alone and underpin the use of computational methods to improve the efficiency of clinical trial studies.

2.
J Med Imaging (Bellingham) ; 8(3): 034501, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33987451

RESUMO

Purpose: The breast pathology quantitative biomarkers (BreastPathQ) challenge was a grand challenge organized jointly by the International Society for Optics and Photonics (SPIE), the American Association of Physicists in Medicine (AAPM), the U.S. National Cancer Institute (NCI), and the U.S. Food and Drug Administration (FDA). The task of the BreastPathQ challenge was computerized estimation of tumor cellularity (TC) in breast cancer histology images following neoadjuvant treatment. Approach: A total of 39 teams developed, validated, and tested their TC estimation algorithms during the challenge. The training, validation, and testing sets consisted of 2394, 185, and 1119 image patches originating from 63, 6, and 27 scanned pathology slides from 33, 4, and 18 patients, respectively. The summary performance metric used for comparing and ranking algorithms was the average prediction probability concordance (PK) using scores from two pathologists as the TC reference standard. Results: Test PK performance ranged from 0.497 to 0.941 across the 100 submitted algorithms. The submitted algorithms generally performed well in estimating TC, with high-performing algorithms obtaining comparable results to the average interrater PK of 0.927 from the two pathologists providing the reference TC scores. Conclusions: The SPIE-AAPM-NCI BreastPathQ challenge was a success, indicating that artificial intelligence/machine learning algorithms may be able to approach human performance for cellularity assessment and may have some utility in clinical practice for improving efficiency and reducing reader variability. The BreastPathQ challenge can be accessed on the Grand Challenge website.

3.
J Pathol Inform ; 12: 15, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012719

RESUMO

BACKGROUND: Observer studies in pathology often utilize a limited number of representative slides per case, selected and reported in a nonstandardized manner. Reference diagnoses are commonly assumed to be generalizable to all slides of a case. We examined these issues in the context of pathologist concordance for histologic subtype classification of ovarian carcinomas (OCs). MATERIALS AND METHODS: A cohort of 114 OCs consisting of 72 cases with a single representative slide (Group 1) and 42 cases with multiple representative slides (148 slides, 2-6 sections per case, Group 2) was independently reviewed by three experts in gynecologic pathology (case-based review). In a follow-up study, each individual slide was independently reviewed in a randomized order by the same pathologists (section-based review). RESULTS: Average interobserver concordance varied from 100% for Group 1 to 64.3% for Group 2 (86.8% across all cases). Across Group 2, 19 cases (45.2%) had at least one slide classified as a different subtype than the subtype assigned from case-based review, demonstrating the impact of intratumoral heterogeneity. Section-based concordance across individual sections from Group 2 was comparable to case-based concordance for those cases indicating diagnostic challenges at the individual section level. Findings demonstrate the increased diagnostic complexity of heterogeneous tumors that require multiple section sampling and its impact on pathologist performance. CONCLUSIONS: The proportion of cases with multiple representative slides in cohorts used in validation studies, such as those conducted to evaluate artificial intelligence/machine learning tools, can influence diagnostic performance, and if not accounted for, can cause disparities between research and real-world observations and between research studies. Case selection in validation studies should account for tumor heterogeneity to create balanced datasets in terms of diagnostic complexity.

4.
Arch Pathol Lab Med ; 145(12): 1516-1525, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33635941

RESUMO

CONTEXT.­: Despite several studies focusing on the validation of whole slide imaging (WSI) across organ systems or subspecialties, the use of WSI for specific primary diagnosis tasks has been underexamined. OBJECTIVE.­: To assess pathologist performance for the histologic subtyping of individual sections of ovarian carcinomas using a light microscope and WSI. DESIGN.­: A panel of 3 experienced gynecologic pathologists provided reference subtype diagnoses for 212 histologic sections from 109 ovarian carcinomas based on optical microscopy review. Two additional attending pathologists provided diagnoses and also identified the presence of a set of 8 histologic features important for ovarian tumor subtyping. Two experienced gynecologic pathologists and 2 fellows reviewed the corresponding WSI images for subtype classification and feature identification. RESULTS.­: Across pathologists specialized in gynecologic pathology, concordance with the reference diagnosis for the 5 major ovarian carcinoma subtypes was significantly higher for a pathologist reading on a microscope than each of 2 pathologists reading on WSI. Differences were primarily due to more frequent classification of mucinous carcinomas as endometrioid with WSI. Pathologists had generally low agreement in identifying histologic features important to ovarian tumor subtype classification with either an optical microscopy or WSI. This result suggests the need for refined histologic criteria for identifying such features. Interobserver agreement was particularly low for identifying intracytoplasmic mucin with WSI. Inconsistencies in evaluating nuclear atypia and mitoses with WSI were also observed. CONCLUSIONS.­: Further research is needed to specify the reasons for these diagnostic challenges and to inform users and manufacturers of WSI technology.


Assuntos
Carcinoma , Neoplasias Ovarianas , Feminino , Humanos , Microscopia , Variações Dependentes do Observador , Neoplasias Ovarianas/diagnóstico por imagem , Patologistas
5.
Stat Methods Med Res ; 29(9): 2749-2763, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32133924

RESUMO

Variance stabilization is an important step in the statistical assessment of quantitative imaging biomarkers. The objective of this study is to compare the Log and the Box-Cox transformations for variance stabilization in the context of assessing the performance of a particular quantitative imaging biomarker, the estimation of lung nodule volume from computed tomography images. First, a model is developed to generate and characterize repeated measurements typically observed in computed tomography lung nodule volume estimation. Given this model, we derive the parameter of the Box-Cox transformation that stabilizes the variance of the measurements across lung nodule volumes. Second, simulated, phantom, and clinical datasets are used to compare the Log and the Box-Cox transformations. Two metrics are used for quantifying the stability of the measurements across the transformed lung nodule volumes: the coefficient of variation for the standard deviation and the repeatability coefficient. The results for simulated, phantom, and clinical datasets show that the Box-Cox transformation generally had better variance stabilization performance compared to the Log transformation for lung nodule volume estimates from computed tomography scans.


Assuntos
Neoplasias Pulmonares , Nódulo Pulmonar Solitário , Biomarcadores , Humanos , Pulmão/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Imagens de Fantasmas , Reprodutibilidade dos Testes , Nódulo Pulmonar Solitário/diagnóstico por imagem , Tomografia Computadorizada por Raios X
6.
Arch Pathol Lab Med ; 144(7): 869-877, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31816269

RESUMO

CONTEXT.­: Clinical decision support (CDS) systems could assist less experienced pathologists with certain diagnostic tasks for which subspecialty training or extensive experience is typically needed. The effect of decision support on pathologist performance for such diagnostic tasks has not been examined. OBJECTIVE.­: To examine the impact of a CDS tool for the classification of ovarian carcinoma subtypes by pathology trainees in a pilot observer study using digital pathology. DESIGN.­: Histologic review on 90 whole slide images from 75 ovarian cancer patients was conducted by 6 pathology residents using: (1) unaided review of whole slide images, and (2) aided review, where in addition to whole slide images observers used a CDS tool that provided information about the presence of 8 histologic features important for subtype classification that were identified previously by an expert in gynecologic pathology. The reference standard of ovarian subtype consisted of majority consensus from a panel of 3 gynecologic pathology experts. RESULTS.­: Aided review improved pairwise concordance with the reference standard for 5 of 6 observers by 3.3% to 17.8% (for 2 observers, increase was statistically significant) and mean interobserver agreement by 9.2% (not statistically significant). Observers benefited the most when the CDS tool prompted them to look for missed histologic features that were definitive for a certain subtype. Observer performance varied widely across cases with unanimous and nonunanimous reference classification, supporting the need for balancing data sets in terms of case difficulty. CONCLUSIONS.­: Findings showed the potential of CDS systems to close the knowledge gap between pathologists for complex diagnostic tasks.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Técnicas de Apoio para a Decisão , Internato e Residência , Neoplasias Ovarianas/patologia , Patologistas/educação , Patologia Clínica/educação , Biópsia , Competência Clínica , Diagnóstico por Computador , Educação de Pós-Graduação em Medicina , Feminino , Humanos , Microscopia , Variações Dependentes do Observador , Neoplasias Ovarianas/classificação , Projetos Piloto , Valor Preditivo dos Testes , Lacunas da Prática Profissional , Reprodutibilidade dos Testes
7.
Acad Radiol ; 26(7): 937-948, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30292564

RESUMO

RATIONALE AND OBJECTIVES: The quantitative assessment of volumetric CT for discriminating small changes in nodule size has been under-examined. This phantom study examined the effect of imaging protocol, nodule size, and measurement method on volume-based change discrimination across low and high object to background contrast tasks. MATERIALS AND METHODS: Eight spherical objects ranging in diameter from 5.0 mm to 5.75 mm and 8.0 mm to 8.75 mm with 0.25 mm increments were scanned within an anthropomorphic phantom with either foam-background (high-contrast task, ∼1000 HU object to background difference)) or gelatin-background (low-contrast task, ∼50 to 100 HU difference). Ten repeat acquisitions were collected for each protocol with varying exposures, reconstructed slice thicknesses and reconstruction kernels. Volume measurements were obtained using a matched-filter approach (MF) and a publicly available 3D segmentation-based tool (SB). Discrimination of nodule sizes was assessed using the area under the ROC curve (AUC). RESULTS: Using a low-dose (1.3 mGy), thin-slice (≤1.5 mm) protocol, changes of 0.25 mm in diameter were detected with AU = 1.0 for all baseline sizes for the high-contrast task regardless of measurement method. For the more challenging low-contrast task and same protocol, MF detected changes of 0.25 mm from baseline sizes ≥5.25 mm and volume changes ≥9.4% with AUC≥0.81 whereas corresponding results for SB were poor (AUC within 0.49-0.60). Performance for SB was improved, but still inconsistent, when exposure was increased to 4.4 mGy. CONCLUSION: The reliable discrimination of small changes in pulmonary nodule size with low-dose, thin-slice CT protocols suitable for lung cancer screening was dependent on the inter-related effects of nodule to background contrast and measurement method.


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Nódulo Pulmonar Solitário/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Área Sob a Curva , Detecção Precoce de Câncer/métodos , Humanos , Pulmão/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Imagens de Fantasmas , Curva ROC , Doses de Radiação , Nódulo Pulmonar Solitário/patologia , Carga Tumoral
8.
Phys Med Biol ; 63(17): 175006, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30101756

RESUMO

Extracting coronary artery calcium (CAC) scores from contrast-enhanced computed tomography (CT) images using dual-energy (DE) based material decomposition has been shown feasible, mainly through patient studies. However, the quantitative performance of such DE-based CAC scores, particularly per stenosis, is underexamined due to lack of reference standard and repeated scans. In this work we conducted a comprehensive quantitative comparative analysis of CAC scores obtained with DE and compare to conventional unenhanced single-energy (SE) CT scans through phantom studies. Synthetic vessels filled with iodinated blood mimicking material and containing calcium stenoses of different sizes and densities were scanned with a third generation dual-source CT scanner in a chest phantom using a DE coronary CT angiography protocol with three exposures/CTDIvol: auto-mAs/8 mGy (automatic exposure), 160 mAs/20 mGy and 260 mAs/34 mGy and 10 repeats. As a control, a set of vessel phantoms without iodine was scanned using a standard SE CAC score protocol (3 mGy). Calcium volume, mass and Agatston scores were estimated for each stenosis. For DE dataset, image-based three-material decomposition was applied to remove iodine before scoring. Performance of DE-based calcium scores were analyzed on a per-stenosis level and compared to SE-based scores. There was excellent correlation between the DE- and SE-based scores (correlation coefficient r: 0.92-0.98). Percent bias for the calcium volume and mass scores varied as a function of stenosis size and density for both modalities. Precision (coefficient of variation) improved with larger and denser stenoses for both DE- and SE-based calcium scores. DE-based scores (20 mGy and 34 mGy) provided comparable per-stenosis precision to SE-based (3 mGy). Our findings suggest that on a per-stenosis level, DE-based CAC scores from contrast-enhanced CT images can achieve comparable quantification performance to conventional SE-based scores. However, DE-based CAC scoring required more dose compared with SE for high per-stenosis precision so some caution is necessary with clinical DE-based CAC scoring.


Assuntos
Angiografia por Tomografia Computadorizada/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Tomógrafos Computadorizados/normas , Calcificação Vascular/diagnóstico por imagem , Angiografia por Tomografia Computadorizada/instrumentação , Vasos Coronários/diagnóstico por imagem , Humanos , Imagens de Fantasmas , Reprodutibilidade dos Testes
9.
Quant Imaging Med Surg ; 7(6): 623-635, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29312867

RESUMO

BACKGROUND: To assess the volumetric measurement of small (≤1 cm) nonsolid nodules with computed tomography (CT), focusing on the interaction of state of the art iterative reconstruction (IR) methods and dose with nodule densities, sizes, and shapes. METHODS: Twelve synthetic nodules [5 and 10 mm in diameter, densities of -800, -630 and -10 Hounsfield units (HU), spherical and spiculated shapes] were scanned within an anthropomorphic phantom. Dose [computed tomography scan dose index (CTDIvol)] ranged from standard (4.1 mGy) to below screening levels (0.3 mGy). Data was reconstructed using filtered back-projection and two state-of-the-art IR methods (adaptive and model-based). Measurements were extracted with a previously validated matched filter-based estimator. Analysis of accuracy and precision was based on evaluation of percent bias (PB) and the repeatability coefficient (RC) respectively. RESULTS: Density had the most important effect on measurement error followed by the interaction of density with nodule size. The nonsolid -630 HU nodules had high accuracy and precision at levels comparable to solid (-10 HU) nonsolid, regardless of reconstruction method and with CTDIvol as low as 0.6 mGy. PB was <5% and <11% for the 10- and 5-mm in nominal diameter -630 HU nodules respectively, and RC was <5% and <12% for the same nodules. For nonsolid -800 HU nodules, PB increased to <11% and <30% for the 10- and 5-mm nodules respectively, whereas RC increased slightly overall but varied widely across dose and reconstruction algorithms for the 5-mm nodules. Model-based IR improved measurement accuracy for the 5-mm, low-density (-800, -630 HU) nodules. For other nodules the effect of reconstruction method was small. Dose did not affect volumetric accuracy and only affected slightly the precision of 5-mm nonsolid nodules. CONCLUSIONS: Reasonable values of both accuracy and precision were achieved for volumetric measurements of all 10-mm nonsolid nodules, and for the 5-mm nodules with -630 HU or higher density, when derived from scans acquired with below screening dose levels as low as 0.6 mGy and regardless of reconstruction algorithm.

10.
Med Phys ; 43(12): 6608, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27908157

RESUMO

PURPOSE: To evaluate the performance of lesion volumetry in hepatic CT as a function of various imaging acquisition parameters. METHODS: An anthropomorphic abdominal phantom with removable liver inserts was designed for this study. Two liver inserts, each containing 19 synthetic lesions with varying diameter (6-40 mm), shape, contrast (10-65 HU), and both homogenous and mixed-density were designed to have background and lesion CT values corresponding to arterial and portal-venous phase imaging, respectively. The two phantoms were scanned using two commercial CT scanners (GE 750 HD and Siemens Biograph mCT) across a set of imaging protocols (four slice thicknesses, three effective mAs, two convolution kernels, two pitches). Two repeated scans were collected for each imaging protocol. All scans were analyzed using a matched-filter estimator for volume estimation, resulting in 6080 volume measurements across all of the synthetic lesions in the two liver phantoms. A subset of portal venous phase scans was also analyzed using a semi-automatic segmentation algorithm, resulting in about 900 additional volume measurements. Lesions associated with large measurement error (quantified by root mean square error) for most imaging protocols were considered not measurable by the volume estimation tools and excluded for the statistical analyses. Imaging protocols were grouped into distinct imaging conditions based on ANOVA analysis of factors for repeatability testing. Statistical analyses, including overall linearity analysis, grouped bias analysis with standard deviation evaluation, and repeatability analysis, were performed to assess the accuracy and precision of the liver lesion volume biomarker. RESULTS: Lesions with lower contrast and size ≤10 mm were associated with higher measurement error and were excluded from further analysis. Lesion size, contrast, imaging slice thickness, dose, and scanner were found to be factors substantially influencing volume estimation. Twenty-four distinct repeatable imaging conditions were determined as protocols for each scanner with a fixed slice thickness and dose. For the matched-filter estimation approach, strong linearity was observed for all imaging data for lesions ≥20 mm. For the Siemens scanner with 50 mAs effective dose at 0.6 mm slice thickness, grouped bias was about -10%. For all other repeatable imaging conditions with both scanners, grouped biases were low (-3%-3%). There was a trend of increasing standard deviation with decreasing dose. For each fixed dose, the standard deviations were similar among the three larger slice thicknesses (1.25, 2.5, 5 mm for GE, 1.5, 3, 5 mm for Siemens). Repeatability coefficients ranged from about 8% to 75% and showed similar trend to grouped standard deviation. For the segmentation approach, the results led to similar conclusions for both lesion characteristic factors and imaging factors but with increasing magnitude in all the error metrics assessed. CONCLUSIONS: Results showed that liver lesion volumetry was strongly dependent on lesion size, contrast, acquisition dose, and their interactions. The overall performances were similar for images reconstructed with larger slice thicknesses, clinically used pitches, kernels, and doses. Conditions that yielded repeatable measurements were identified and they agreed with the Quantitative Imaging Biomarker Alliance's (QIBA) profile requirements in general. The authors' findings also suggest potential refinements to these guidelines for the tumor volume biomarker, especially for soft-tissue lesions.


Assuntos
Algoritmos , Neoplasias Hepáticas/diagnóstico por imagem , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/instrumentação , Incerteza , Humanos , Modelos Lineares , Reprodutibilidade dos Testes , Razão Sinal-Ruído
11.
Acad Radiol ; 23(12): 1470-1479, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27665673

RESUMO

RATIONALE AND OBJECTIVES: Different computed tomography imaging protocols and patient characteristics can impact the accuracy and precision of the calcium score and may lead to inconsistent patient treatment recommendations. The aim of this work was to determine the impact of reconstruction algorithm and gender characteristics on coronary artery calcium scoring based on a phantom study using computed tomography. MATERIALS AND METHODS: Four synthetic heart vessels with vessel diameters corresponding to female and male left main and left circumflex arteries containing calcification-mimicking materials (200-1000 HU) were inserted into a thorax phantom and were scanned with and without female breast plates (male and female phantoms, respectively). Ten scans were acquired and were reconstructed at 3-mm slices using filtered-back projection (FBP) and iterative reconstruction with medium and strong denoising (IR3 and IR5) algorithms. Agatston and calcium volume scores were estimated for each vessel. Calcium scores for each vessel and the total calcium score (summation of all four vessels) were compared between the two phantoms to quantify the impact of the breast plates and reconstruction parameters. Calcium scores were also compared among vessels of different diameters to investigate the impact of the vessel size. RESULTS: The calcium scores were significantly larger for FBP reconstruction (FBP > IR3>IR5). Agatston scores (calcium volume score) for vessels in the male phantom scans were on average 4.8% (2.9%), 8.2% (7.1%), and 10.5% (9.4%) higher compared to those in the female phantom with FBP, IR3, and IR5, respectively, when exposure was conserved across phantoms. The total calcium scores from the male phantom were significantly larger than those from the female phantom (P <0.05). In general, calcium volume scores were underestimated (up to about 50%) for smaller vessels, especially when scanned in the female phantom. CONCLUSIONS: Calcium scores significantly decreased with iterative reconstruction and tended to be underestimated for female anatomy (smaller vessels and presence of breast plates).


Assuntos
Doença da Artéria Coronariana/diagnóstico por imagem , Calcificação Vascular/diagnóstico por imagem , Algoritmos , Feminino , Humanos , Masculino , Imagens de Fantasmas , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Reprodutibilidade dos Testes , Razão Sinal-Ruído , Tomografia Computadorizada por Raios X/métodos
12.
Acad Radiol ; 23(8): 940-52, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27215408

RESUMO

RATIONALE AND OBJECTIVES: Quantifying changes in lung tumor volume is important for diagnosis, therapy planning, and evaluation of response to therapy. The aim of this study was to assess the performance of multiple algorithms on a reference data set. The study was organized by the Quantitative Imaging Biomarker Alliance (QIBA). MATERIALS AND METHODS: The study was organized as a public challenge. Computed tomography scans of synthetic lung tumors in an anthropomorphic phantom were acquired by the Food and Drug Administration. Tumors varied in size, shape, and radiodensity. Participants applied their own semi-automated volume estimation algorithms that either did not allow or allowed post-segmentation correction (type 1 or 2, respectively). Statistical analysis of accuracy (percent bias) and precision (repeatability and reproducibility) was conducted across algorithms, as well as across nodule characteristics, slice thickness, and algorithm type. RESULTS: Eighty-four percent of volume measurements of QIBA-compliant tumors were within 15% of the true volume, ranging from 66% to 93% across algorithms, compared to 61% of volume measurements for all tumors (ranging from 37% to 84%). Algorithm type did not affect bias substantially; however, it was an important factor in measurement precision. Algorithm precision was notably better as tumor size increased, worse for irregularly shaped tumors, and on the average better for type 1 algorithms. Over all nodules meeting the QIBA Profile, precision, as measured by the repeatability coefficient, was 9.0% compared to 18.4% overall. CONCLUSION: The results achieved in this study, using a heterogeneous set of measurement algorithms, support QIBA quantitative performance claims in terms of volume measurement repeatability for nodules meeting the QIBA Profile criteria.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Nódulo Pulmonar Solitário/diagnóstico por imagem , Nódulo Pulmonar Solitário/patologia , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Humanos , Pulmão/diagnóstico por imagem , Pulmão/patologia , Imagens de Fantasmas , Reprodutibilidade dos Testes , Carga Tumoral
13.
J Med Imaging (Bellingham) ; 3(1): 013504, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26844235

RESUMO

This work focuses on volume estimation of "multidensity" lung nodules in a phantom computed tomography study. Eight objects were manufactured by enclosing spherical cores within larger spheres of double the diameter but with a different density. Different combinations of outer-shell/inner-core diameters and densities were created. The nodules were placed within an anthropomorphic phantom and scanned with various acquisition and reconstruction parameters. The volumes of the entire multidensity object as well as the inner core of the object were estimated using a model-based volume estimator. Results showed percent volume bias across all nodules and imaging protocols with slice thicknesses [Formula: see text] ranging from [Formula: see text] to 6.6% for the entire object (standard deviation ranged from 1.5% to 7.6%), and within [Formula: see text] to 5.7% for the inner-core measurement (standard deviation ranged from 2.0% to 17.7%). Overall, the estimation error was larger for the inner-core measurements, which was expected due to the smaller size of the core. Reconstructed slice thickness was found to substantially affect volumetric error for both tasks; exposure and reconstruction kernel were not. These findings provide information for understanding uncertainty in volumetry of nodules that include multiple densities such as ground glass opacities with a solid component.

14.
Med Phys ; 43(1): 568, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26745949

RESUMO

PURPOSE: Traditional ways to estimate 2D CT noise power spectrum (NPS) involve an ensemble average of the power spectrums of many noisy scans. When only a few scans are available, regions of interest are often extracted from different locations to obtain sufficient samples to estimate the NPS. Using image samples from different locations ignores the nonstationarity of CT noise and thus cannot accurately characterize its local properties. The purpose of this work is to develop a method to estimate local NPS using only a few fan-beam CT scans. METHODS: As a result of FBP reconstruction, the CT NPS has the same radial profile shape for all projection angles, with the magnitude varying with the noise level in the raw data measurement. This allows a 2D CT NPS to be factored into products of a 1D angular and a 1D radial function in polar coordinates. The polar separability of CT NPS greatly reduces the data requirement for estimating the NPS. The authors use this property and derive a radial NPS estimation method: in brief, the radial profile shape is estimated from a traditional NPS based on image samples extracted at multiple locations. The amplitudes are estimated by fitting the traditional local NPS to the estimated radial profile shape. The estimated radial profile shape and amplitudes are then combined to form a final estimate of the local NPS. We evaluate the accuracy of the radial NPS method and compared it to traditional NPS methods in terms of normalized mean squared error (NMSE) and signal detectability index. RESULTS: For both simulated and real CT data sets, the local NPS estimated with no more than six scans using the radial NPS method was very close to the reference NPS, according to the metrics of NMSE and detectability index. Even with only two scans, the radial NPS method was able to achieve a fairly good accuracy. Compared to those estimated using traditional NPS methods, the accuracy improvement was substantial when a few scans were available. CONCLUSIONS: The radial NPS method was shown to be accurate and efficient in estimating the local NPS of FBP-reconstructed 2D CT images. It presents strong advantages over traditional NPS methods when the number of scans is limited and can be extended to estimate the in-plane NPS of cone-beam CT and multislice helical CT scans.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Razão Sinal-Ruído , Tomografia Computadorizada por Raios X , Humanos
15.
Acad Radiol ; 22(11): 1393-408, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26376841

RESUMO

RATIONALE AND OBJECTIVES: Tumor volume change has potential as a biomarker for diagnosis, therapy planning, and treatment response. Precision was evaluated and compared among semiautomated lung tumor volume measurement algorithms from clinical thoracic computed tomography data sets. The results inform approaches and testing requirements for establishing conformance with the Quantitative Imaging Biomarker Alliance (QIBA) Computed Tomography Volumetry Profile. MATERIALS AND METHODS: Industry and academic groups participated in a challenge study. Intra-algorithm repeatability and inter-algorithm reproducibility were estimated. Relative magnitudes of various sources of variability were estimated using a linear mixed effects model. Segmentation boundaries were compared to provide a basis on which to optimize algorithm performance for developers. RESULTS: Intra-algorithm repeatability ranged from 13% (best performing) to 100% (least performing), with most algorithms demonstrating improved repeatability as the tumor size increased. Inter-algorithm reproducibility was determined in three partitions and was found to be 58% for the four best performing groups, 70% for the set of groups meeting repeatability requirements, and 84% when all groups but the least performer were included. The best performing partition performed markedly better on tumors with equivalent diameters greater than 40 mm. Larger tumors benefitted by human editing but smaller tumors did not. One-fifth to one-half of the total variability came from sources independent of the algorithms. Segmentation boundaries differed substantially, not ony in overall volume but also in detail. CONCLUSIONS: Nine of the 12 participating algorithms pass precision requirements similar to what is indicated in the QIBA Profile, with the caveat that the present study was not designed to explicitly evaluate algorithm profile conformance. Change in tumor volume can be measured with confidence to within ±14% using any of these nine algorithms on tumor sizes greater than 10 mm. No partition of the algorithms was able to meet the QIBA requirements for interchangeability down to 10 mm, although the partition comprising best performing algorithms did meet this requirement for a tumor size of greater than approximately 40 mm.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Tomografia Computadorizada por Raios X , Carga Tumoral , Algoritmos , Feminino , Humanos , Modelos Lineares , Pulmão/diagnóstico por imagem , Pulmão/patologia , Reprodutibilidade dos Testes
16.
Med Phys ; 42(7): 3932-47, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26133594

RESUMO

PURPOSE: To determine inter-related factors that contribute substantially to measurement error of pulmonary nodule measurements with CT by assessing a large-scale dataset of phantom scans and to quantitatively validate the repeatability and reproducibility of a subset containing nodules and CT acquisitions consistent with the Quantitative Imaging Biomarker Alliance (QIBA) metrology recommendations. METHODS: The dataset has about 40 000 volume measurements of 48 nodules (5-20 mm, four shapes, three radiodensities) estimated by a matched-filter estimator from CT images involving 72 imaging protocols. Technical assessment was performed under a framework suggested by QIBA, which aimed to minimize the inconsistency of terminologies and techniques used in the literature. Accuracy and precision of lung nodule volume measurements were examined by analyzing the linearity, bias, variance, root mean square error (RMSE), repeatability, reproducibility, and significant and substantial factors that contribute to the measurement error. Statistical methodologies including linear regression, analysis of variance, and restricted maximum likelihood were applied to estimate the aforementioned metrics. The analysis was performed on both the whole dataset and a subset meeting the criteria proposed in the QIBA Profile document. RESULTS: Strong linearity was observed for all data. Size, slice thickness × collimation, and randomness in attachment to vessels or chest wall were the main sources of measurement error. Grouping the data by nodule size and slice thickness × collimation, the standard deviation (3.9%-28%), and RMSE (4.4%-68%) tended to increase with smaller nodule size and larger slice thickness. For 5, 8, 10, and 20 mm nodules with reconstruction slice thickness ≤0.8, 3, 3, and 5 mm, respectively, the measurements were almost unbiased (-3.0% to 3.0%). Repeatability coefficients (RCs) were from 6.2% to 40%. Pitch of 0.9, detail kernel, and smaller slice thicknesses yielded better (smaller) RCs than those from pitch of 1.2, medium kernel, and larger slice thicknesses. Exposure showed no impact on RC. The overall reproducibility coefficient (RDC) was 45%, and reduced to about 20%-30% when the slice thickness and collimation were fixed. For nodules and CT imaging complying with the QIBA Profile (QIBA Profile subset), the measurements were highly repeatable and reproducible in spite of variations in nodule characteristics and imaging protocols. The overall measurement error was small and mostly due to the randomness in attachment. The bias, standard deviation, and RMSE grouped by nodule size and slice thickness × collimation in the QIBA Profile subset were within ±3%, 4%, and 5%, respectively. RCs are within 11% and the overall RDC is equal to 11%. CONCLUSIONS: The authors have performed a comprehensive technical assessment of lung nodule volumetry with a matched-filter estimator from CT scans of synthetic nodules and identified the main sources of measurement error among various nodule characteristics and imaging parameters. The results confirm that the QIBA Profile set is highly repeatable and reproducible. These phantom study results can serve as a bound on the clinical performance achievable with volumetric CT measurements of pulmonary nodules.


Assuntos
Pulmão/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Análise de Variância , Interpretação Estatística de Dados , Conjuntos de Dados como Assunto , Funções Verossimilhança , Modelos Lineares , Modelos Biológicos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X/instrumentação
17.
AJR Am J Roentgenol ; 204(6): 1242-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26001234

RESUMO

OBJECTIVE: Pulmonary nodules of ground-glass opacity represent one imaging manifestation of a slow-growing variant of lung cancer. The objective of this phantom study was to quantify the effect of the radiation dose used for the examination (volume CT dose index [CTDI(vol)]), type of reconstruction algorithm, and choice of postreconstruction enhancement algorithms on the measurement error when assessing the volume of simulated lung nodules with CT, focusing on two radiodensity levels. MATERIALS AND METHODS: Twelve synthetic nodules of two radiodensities (-630 and -10 HU), three shapes (spherical, lobulated, and spiculated), and two sizes (nominal diameters of 5 and 10 mm) were inserted into an anthropomorphic chest phantom and scanned with techniques varying in CTDI(vol) (from subscreening dose [0.8 mGy] to diagnostic levels [6.5 mGy]), reconstruction algorithms (iterative reconstruction and filtered back projection), and different postreconstruction enhancement algorithms. Nodule volume was measured from the resulting reconstructed CT images with a matched filter estimator. RESULTS: No significant over- or underestimation of nodule volume was observed across individual variables, with low percentage error overall (-1.4%) and for individual variables (range, -3.4% to 0.4%). The magnitude of percentage error was also low (overall average percentage error < 6% and SD values < 4.5%) and for individual variables (absolute percentage error range 3.3-5.6%). No clinically significant differences were observed between different levels of CTDI(vol), use of iterative reconstruction algorithms, or use of different postreconstruction enhancement algorithms. CONCLUSION: These results indicate that, if validated for other measurement tools and scanners, lung nodule volume measurements from scans acquired and reconstructed with significantly different acquisition and reconstruction techniques can be reliably compared.


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Doses de Radiação , Proteção Radiológica/métodos , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Nódulo Pulmonar Solitário/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Humanos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/instrumentação
19.
Phys Med Biol ; 60(2): 671-88, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25555240

RESUMO

Measurements of lung nodule volume with multi-detector computed tomography (MDCT) have been shown to be more accurate and precise compared to conventional lower dimensional measurements. Quantifying the size of lesions is potentially more difficult when the object-to-background contrast is low as with lesions in the liver. Physical phantom and simulation studies are often utilized to analyze the bias and variance of lesion size estimates because a ground truth or reference standard can be established. In addition, it may also be useful to derive theoretical bounds as another way of characterizing lesion sizing methods. The goal of this work was to study the performance of a MDCT system for a lesion volume estimation task with object-to-background contrast less than 50 HU, and to understand the relation among performances obtained from phantom study, simulation and theoretical analysis. We performed both phantom and simulation studies, and analyzed the bias and variance of volume measurements estimated by a matched-filter-based estimator. We further corroborated results with a theoretical analysis to estimate the achievable performance bound, which was the Cramer-Rao's lower bound (CRLB) of minimum variance for the size estimates. Results showed that estimates of non-attached solid small lesion volumes with object-to-background contrast of 31-46 HU can be accurate and precise, with less than 10.8% in percent bias and 4.8% in standard deviation of percent error (SPE), in standard dose scans. These results are consistent with theoretical (CRLB), computational (simulation) and empirical phantom bounds. The difference between the bounds is rather small (for SPE less than 1.9%) indicating that the theoretical- and simulation-based performance bounds can be good surrogates for physical phantom studies.


Assuntos
Simulação por Computador , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Modelos Teóricos , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos , Carga Tumoral , Humanos , Neoplasias Hepáticas/patologia , Doses de Radiação
20.
Anal Cell Pathol (Amst) ; 2014: 157308, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25763314

RESUMO

BACKGROUND: We conducted a validation study of digital pathology for the quantitative assessment of tissue-based biomarkers with immunohistochemistry. OBJECTIVE: To examine observer agreement as a function of viewing modality (digital versus optical microscopy), whole slide versus tissue microarray (TMA) review, biomarker type (HER2 incorporating membranous staining and Ki-67 with nuclear staining), and data type (continuous and categorical). METHODS: Eight pathologists reviewed 50 breast cancer whole slides (25 stained with HER2 and 25 with Ki-67) and 2 TMAs (1 stained with HER2, 1 with Ki-67, each containing 97 cores), using digital and optical microscopy. RESULTS: Results showed relatively high overall interobserver and intermodality agreement, with different patterns specific to biomarker type. For HER2, there was better interobserver agreement for optical compared to digital microscopy for whole slides as well as better interobserver and intermodality agreement for TMAs. For Ki-67, those patterns were not observed. CONCLUSIONS: The differences in agreement patterns when examining different biomarkers and different scoring methods and reviewing whole slides compared to TMA stress the need for validation studies focused on specific pathology tasks to eliminate sources of variability that might dilute findings. The statistical uncertainty observed in our analyses calls for adequate sampling for each individual task rather than pooling cases.


Assuntos
Biomarcadores Tumorais/análise , Processamento de Imagem Assistida por Computador/métodos , Microscopia/métodos , Patologia Clínica/métodos , Patologia Clínica/normas , Neoplasias da Mama/diagnóstico , Feminino , Humanos , Imuno-Histoquímica , Variações Dependentes do Observador , Análise Serial de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...